技术文章
Technical articles
热门搜索:
P760/01_2760nm单模垂直腔面发射激光器
VCSEL-20-M激光控制驱动器
ZNSP25.4-1IR抛光硫化锌(ZnS)多光谱(透明)窗片 0.37-13.5um 25.4X1.0mm(晶体/棱镜
HB-C0BFAS0832x4 QPSK C波段相干混频器(信号解调/锁相放大器等)
Frequad-W-CW DUV 单频连续激光器 213nm 10mW Frequad-W
ER40-6/125截止波长1300nm 高掺杂EDF掺铒光纤
SNA-4-FC-UPC日本精工法兰FC/UPC(连接器/光纤束/光缆)
GD5210Y-2-2-TO46905nm 硅雪崩光电二极管 400-1100nm
WISTSense Point 紧凑型高精度光纤传感器解调仪(信号解调/锁相放大器等)
CO2激光光谱分析仪
1030nm超短脉冲种子激光器PS-PSL-1030
FLEX-BF裸光纤研磨机
高能激光光谱光束组合的光栅 (色散匀化片)
NANOFIBER-400-9-SA干涉型单模微纳光纤传感器 1270-2000nm
IRV2000-1X350-2000nm 1倍红外观察镜
S+C+L波段 160nm可调谐带通滤波器
更新时间:2022-06-07
点击次数:5794
一、EDFA基本原理
1,掺铒光纤
铒是一种稀土元素,原子序数是68,原子量为167.3.铒离子的电子能级如图所示,由下能级向上能级的跃迁则对应光的吸收过程。而由上能级向下能级的跃迁则对应于光的发射过程:

2,EDFA原理

EDFA采用掺铒离子光纤作为增益介质,在泵浦光作用下产生粒子数反转,在信号光诱导下实现受激辐射放大。
铒离子有三个能级,在未受任何光激励的情况下,处在zui低能级E1上,当用泵浦光源的激光不断激发光纤时,处于基态的粒子获得能量就会向高能级跃迁。如由E1跃迁至E3,由于粒子在E3 这个高能级上是不稳定的,它将迅速以无辐she跃迁过程落到亚稳态E2 上。在该能级上,相对来讲粒子有较长的存活寿命,此时,由于泵浦光源不断的激发,则E2能级上的粒子数就不断的增加,而E1能级上的粒子数就减少,这样,在掺铒光纤中实现了粒子数反转分布,就具备了实现光放大的条件。
当输入信号光子能量E=hf正好等于E2和E1 的能级差时,即E2-E1=hf,则亚稳态上的粒子将以受激辐射的形式跃迁到基态E1上,并辐射处和输入信号中的光子一样的全同光子,从而大大加大了光子数量,使得输入光信号在掺铒光纤中变为一个强的输出光信号,实现了对光信号的直接放大。
二、系统示意图及基本器件介绍
1,C、L波段光纤放大器系统示意图如下:

2,掺铒光纤自发辐射ASE光源系统示意图如下:

器件介绍及产品连接
我们可以提供的方案产品包括:
| 产品 | 基本参数 | 产品连接 |
ER30-4/125掺鉺单模光纤(Liekki™) |
| http://www.microphotons。。cn/?a=cp3&id=129 |
980nm泵浦激光器 |
| http://www.microphotons。。cn/?a=cp3&id=84 |
1600nmDFB 种子源 |
| http://ld-pd.com/?a=cp3&id=279 |
1550nm隔离器 |
| http://www.microphotons。。cn/?a=cp3&id=366 |
980nm/1550nm WDM |
| http://www.microphotons。。cn/?a=cp3&id=110 |
1550nm光纤耦合器 |
| http://www.microphotons。。cn/?a=cpinfo&id=915 |
1550nm DFB 种子源 |
| http://ld-pd.com/?a=cp3&id=245 |
三、系统搭建及结果分析
1,系统搭建

我们采用1550nm和1600nmDFB 激光器作为种子源,980nm激光器作为泵浦源。掺铒光纤长度为8.8米。种子源发出的光经过1550nm光纤隔离器之后,与980nm泵浦光通过980nm/1550nm WDM,进入到掺铒光纤,输出的光经过1550nm光纤耦合器分光,一部分进入到功率计中检测功率,一部分进入光谱仪看对应的光谱形状。

980nm泵浦激光器电流-功率曲线

C波段光纤放大器,1550nm DFB种子源

L波段光纤放大器,1600nm DFB 种子源16.08mW下的放大功率曲线
2,放大光谱对比

种子源电流120mA,泵浦电流800mA

种子源功率16.08mW,泵浦功率375mW
3,掺铒光纤的ASE光谱

4,实验过程中,我们发现在掺铒光纤上出现了绿色的荧光
解释:这是因为在激发态,有的粒子没有落到亚稳态,而是还吸收泵浦光的能量,上升到更高的能级,然后粒子直接落到基态,辐射出514nm左右的绿光,也就是我看到的荧光现象。
通过搭建光纤放大器系统,我们基本达到了预期的效果,后续我们还会继续改进我们的系统,以达到更好的效果。