技术文章
Technical articles
热门搜索:
P760/01_2760nm单模垂直腔面发射激光器
VCSEL-20-M激光控制驱动器
ZNSP25.4-1IR抛光硫化锌(ZnS)多光谱(透明)窗片 0.37-13.5um 25.4X1.0mm(晶体/棱镜
HB-C0BFAS0832x4 QPSK C波段相干混频器(信号解调/锁相放大器等)
Frequad-W-CW DUV 单频连续激光器 213nm 10mW Frequad-W
ER40-6/125截止波长1300nm 高掺杂EDF掺铒光纤
GD5210Y-2-2-TO46905nm 硅雪崩光电二极管 400-1100nm
SNA-4-FC-UPC日本精工法兰FC/UPC(连接器/光纤束/光缆)
WISTSense Point 紧凑型高精度光纤传感器解调仪(信号解调/锁相放大器等)
CO2激光光谱分析仪
1030nm超短脉冲种子激光器PS-PSL-1030
FLEX-BF裸光纤研磨机
NANOFIBER-400-9-SA干涉型单模微纳光纤传感器 1270-2000nm
高能激光光谱光束组合的光栅 (色散匀化片)
350-2000nm 1倍红外观察镜
S+C+L波段 160nm可调谐带通滤波器
研究背景在高速风洞内开展激光破坏实验,是高速目标激光破坏机理研究的一种重要手段。开展此实验不仅需要同时具备高速风洞与高能激光的实验装备条件,还要在实验过程中获取足够充分的多物理场动态信息。激光辐照面的损伤演化原位观测是其中的一个关键技术。在强激光辐照下,靶材表面迅速升温并形成高温强辐射,加之激光辐射以及高速风洞环境干扰等因素,激光辐照面的瞬态烧蚀行为被直接观测的难度极大,目前还未有实质性进展。目前常用的分析方法是在实验结束后对靶材进行测量,获取最终的烧蚀形貌、烧蚀深度或平均质...
一、研究背景光刻机是目前集成电路芯片制造的备工具,照明系统是光刻机的核心分系统之一,为掩模面提供均匀照明、控制曝光剂量并实现不同的照明模式。其中,匀光单元用于实现照明均匀化,其设计直接影响照明系统乃至光刻机的性能。用于光刻机照明系统的匀光元件有积分棒、微透镜阵列(MLA)、衍射光学元件(DOE)等。由于衍射损耗,DOE的使用仅限于小角度,并降低了传输效率,因此不常用于光刻机匀光单元。积分棒结构简单,加工难度和成本较低,但在小数值孔径情况下需要非常大的长宽比才能达到较好的匀光效...
1、智能化激光制造装备1.1光束调控如何获得高质量、高精度的激光是激光技术基础研究和应用研究中广受关注的课题,而人工智能算法正是实现激光光束质量预测和调控的有效手段。针对现有简单仿真模型对复杂光学系统预测能力不足的问题,哈尔滨工业大学刘国栋团队将深度神经网络与Frantz-Nodvik方程相结合,提出了一种优于传统拟合方法的大功率ICF激光系统中主放大器输出能量预测新方法(图1)。国防科技大学周朴团队不仅利用深度学习技术实现了少模光纤激光器光束传播因子M2的准确预测,还通过深...
研究背景超短激光脉冲烧蚀具有热影响区小、精度高等优势,在透明材料微加工中已得到广泛研究和应用;基于脉冲序列模式的超短脉冲激光是进一步提高材料去除效率和质量的有效手段。脉冲序列模式的子脉冲重复频率常为~MHz,通过控制烧蚀与热积累等效应,显著提升了烧蚀效率。为了追求更高的加工效率,近年来,重频GHz的脉冲序列激光烧蚀加工成为研究热点。GHz子脉冲间隔小于1ns,能够同时实现对电子动力学过程和能量沉积分布的精密调控,从而实现烧蚀机理和效应的控制和优化。GHz脉冲序列激光微加工研究...
锁模激光器在很多领域已经获得了广泛应用,例如光学频率梳、精密制造、光纤通信、激光雷达等。锁模光纤激光器作为一个便捷的桌面化非线性系统,在基础科学领域也发挥着重要作用,例如锁模光纤激光器为非线性科学研究提供了理想的平台。由于锁模激光器中存在复杂的锁模区间,如何控制激光器的参数进而访问特定的锁模态是一个颇具挑战性的难题。以常用的基于非线性偏振旋转锁模技术的飞秒光纤激光器为例,其在数学上是一个多维参量空间,实验上需要调谐至少7个参量(泵浦、损耗、色散、非线性和三个波片角度)才能遍历...
在激光技术日益渗透现代科技各个领域的今天,无论是精准的医疗手术、高效的工业加工,还是高速的光纤通信,其背后都离不开一位至关重要的“幕后指挥官”——激光控制驱动器。它虽不直接发光,却是决定激光性能、保障安全运行的核心大脑与动力心脏。一、核心作用:精准的能量调控与输出保障激光控制驱动器本质上是一种为激光器提供精确电流和电压的电子设备。它的核心使命是确保激光器能够稳定、高效且安全地输出符合要求的光束。其首要作用是提供稳定且可精确调节的驱动电流。激光二极管的输出光功率对驱动电流的变化...
一、背景介绍激光具有亮度高、单色性好、方向性好等优点,经过六十余年的发展,已经广泛应用于科学研究、医疗卫生、先进制造、**等诸多领域。然而,由于物理、材料、器件、工艺等方面因素的限制,激光系统性能提升面临的挑战越来越大;与此同时,科学研究、先进制造、**等应用场景对激光器的性能提出了越来越高的要求,如何进一步优化提升激光性能、实现激光特性的精准调控是亟待解决的问题。得益于人工智能(AI)及相关技术的快速进步,AI技术在激光系统优化设计、光束控制以及特性表征等方面取得了良好的运...
作为一种高性能光源,激光器在工业生产、科学研究中占据着重要的地位,其所产生的激光已经被广泛应用于加工、测量、通信、医疗等领域。近年来,人们注意到激光器本身也可作为一个有力的计算工具,这是因为:一方面,激光器在混沌振荡、弛豫振荡等非稳态过程中的随机性和非线性可用于完成复杂计算任务;另一方面,在没有外界干扰的情况下,激光腔内的光场经过模式竞争等物理过程能够自发演化至一个损耗的稳定振荡状态,该振荡状态也可映射至一个复杂计算问题的解。随着光计算领域的蓬勃发展,结合日趋成熟的各类激光产...